This article provides a brief explanation of the KMeans Clustering algorithm.
What is the KMeans Clustering algorithm?
The KMeans Clustering algorithm is a process by which objects are classified into number of groups so that they are as much dissimilar as possible from one group to another, and as much similar as possible within each group. KMeans Clustering is a grouping of similar things or data. For example, objects within group 1 (cluster 1) shown in image below should be as similar as possible.
But there should be much difference between an object in group 1 and group 2.
The attributes of objects decide which objects should be grouped together. This method is used to find groups that have not been explicitly labeled in the data, and it can be used to confirm business assumptions about what types of groups exist, or to identify unknown groups in complex data sets. Once the algorithm has been run and the groups are defined, any new data can be easily assigned to the correct group.
How Does an Enterprise Use the KMeans Clustering Algorithm to Analyze Data?
In order to understand how best to make use of this algorithm; let’s look at some general examples, followed by some business use cases.
- Loan applicants in a bank might be grouped as low, medium, and high risk applicants based on applicant age, annual income, employment tenure, loan amount, the number of times a payment is delinquent etc.
- A movie ticket booking website can group users into frequent ticket buyers, moderate ticket buyers and occasional ticket buyers, based on past movie ticket purchases.
KMeans Clustering can be applied to segment customers by purchasing history, segment users by the activities they perform on a website, define demographic profiles based on interests, and recognize market patterns.
Use Case – 1
Business Problem: Organizing customers into groups/segments based on similar traits, product preferences and expectations. Segments are constructed on basis of the customers’ demographic characteristics, psychographics, past behavior and product use behaviors.
Business Benefit: Once the segments are identified, marketing messages and even products can be customized for each segment. The better the segment(s) chosen for targeting by a particular organization, the more successful it is assumed to be in the market place.
Use Case – 2
Business Problem: Discount Analysis and Customer Retention will help the organization to target discounts to specific customers and the business will need to visualize ‘segments of sales group based on discount behavior’ and ‘customer churn to identify segments of customers on the verge of leaving’.
Business Benefit: The business marketing team can focus on risky customer segments in an efficient way in order to avoid losing those customers. Sales team segments that are facing challenges based on any current discounting strategy can be identified and a deal negotiation strategy can be improved and optimized.
The KMeans Clustering algorithm is very useful in identifying patterns within groups and understanding the common characteristics to support decisions regarding pricing, product features, risk within certain groups, etc.
The Smarten approach to augmented analytics and modern business intelligence focuses on the business user and provides tools for Advanced Data Discovery so users can perform early prototyping and test hypotheses without the skills of a data scientist. Smarten Augmented Analytics tools include assisted predictive modeling, smart data visualization, self-serve data preparation, Clickless Analytics with natural language processing (NLP) for search analytics,Auto Insights, Key Influencer Analytics, and SnapShot monitoring and alerts. These tools are designed for business users with average skills and require no specialized knowledge of statistical analysis or support from IT or data scientists. Businesses can advance Citizen Data Scientist initiatives with in-person and online workshops and self-paced eLearning courses designed to introduce users and businesses to the concept, illustrate the benefits and provide introductory training on analytical concepts and the Citizen Data Scientist role.
The Smarten approach to data discovery is designed as an augmented analytics solution to serve business users. Smarten is a representative vendor in multiple Gartner reports including the Gartner Modern BI and Analytics Platform report and the Gartner Magic Quadrant for Business Intelligence and Analytics Platforms Report.
Original Post: What is the KMeans Clustering Algorithm and How Does an Enterprise Use it to Analyze Data?